
A Survey on Efficient Large Language Model Training:
From Data-centric Perspectives

Junyu Luo1, Bohan Wu1, Xiao Luo2†, Zhiping Xiao3†, Yiqiao Jin4, Rong-Cheng Tu5,
Nan Yin6, Yifan Wang7, Jingyang Yuan1, Wei Ju1, Ming Zhang1†

1 State Key Laboratory for Multimedia Information Processing,
School of Computer Science, PKU-Anker LLM Lab, Peking University

2 University of California, Los Angeles 3 University of Washington
4 Georgia Institute of Technology 5 Nanyang Technological University

6 HKUST 7 University of International Business and Economics
https://github.com/luo-junyu/Awesome-Data-Efficient-LLM

Abstract

Post-training of Large Language Models
(LLMs) is crucial for unlocking their task gen-
eralization potential and domain-specific ca-
pabilities. However, the current LLM post-
training paradigm faces significant data chal-
lenges, including the high costs of manual an-
notation and diminishing marginal returns on
data scales. Therefore, achieving data-efficient
post-training has become a key research ques-
tion. In this paper, we present the first system-
atic survey of data-efficient LLM post-training
from a data-centric perspective. We propose a
taxonomy of data-efficient LLM post-training
methods, covering data selection, data quality
enhancement, synthetic data generation, data
distillation and compression, and self-evolving
data ecosystems. We summarize representa-
tive approaches in each category and outline
future research directions. By examining the
challenges in data-efficient LLM post-training,
we highlight open problems and propose po-
tential research avenues. We hope our work
inspires further exploration into maximizing
the potential of data utilization in large-scale
model training.

1 Introduction

Large Language Models (LLMs) post-training has
emerged as a crucial stage for unlocking their
domain adaptation capabilities and task general-
ization potential (Luo et al., 2025b). This phase
has effectively enhanced models’ abilities in long-
context reasoning (Zelikman et al., 2022; Yuan
et al., 2024c), human alignment (Rafailov et al.,
2024), instruction tuning (Zhang et al., 2023b), and
domain-specific adaptation (Cheng et al., 2024).

During the LLM post-training phase, data is the
essential driver of model evolution. However, the
current paradigm faces a severe data dilemma: the
cost of manually annotating high-quality data is
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Figure 1: Illustration of the data flywheel in Data-
Efficient LLM Post-Training, depicting the iterative
cycle of data selection, data quality enhancement, syn-
thetic data generation, knowledge distillation, and self-
evolving data ecosystems to maximize model perfor-
mance with minimal data requirements.

rapidly growing, while simply scaling data vol-
ume yields diminishing returns. Moreover, static
datasets inherently limit models from adapting to
evolving real-world knowledge. The linear de-
pendency between data volume and model perfor-
mance fundamentally stems from the inefficient
data usage in traditional post-training paradigms.
The recent success of DeepSeek-R1 (Guo et al.,
2025), which leverages reinforcement learning for
data-efficient post-training, further demonstrates
the effectiveness and necessity of data-efficient ap-
proaches in achieving superior LLM performance.
Our work establishes the first systematic survey
on data-efficient training of LLMs, providing a
unified, taxonomized framework to address the
fragmented research landscape. Our survey re-
veals that breaking through efficiency bottlenecks
requires establishing value extraction across the
lifecycle, rather than merely expanding data scale.

Researchers have explored various approaches
to fully exploit the data potential in LLM post-
training (Jeong et al., 2024; Wang et al., 2024a;
Pan et al., 2024b). While these methods have made
notable progress in improving data efficiency, the
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field still lacks a comprehensive review. In this
paper, we provide a comprehensive survey of data-
efficient LLM post-training from a data-centric per-
spective. Specifically, we introduce the concept of
a data value flywheel (as illustrated in Figure 1),
which consists of five key components: data se-
lection, data quality enhancement, synthetic data
generation, data distillation and compression, and
self-evolving data ecosystems. Using this frame-
work, we present a taxonomy of existing work,
summarize key components, and identify promis-
ing research directions. We hope our work serves
as both a useful roadmap for newcomers and a
guide for future advancements in the field.
Differences from previous surveys. While sev-
eral surveys have explored a few aspects of LLMs
post-training, including data selection (Wang et al.,
2024b), synthetic data generation (Long et al.,
2024; Tan et al., 2024), model self-feedback (Liang
et al., 2024a; Pan et al., 2023), self-evolution (Tao
et al., 2024), trustworthiness (Liu et al., 2023), and
time-efficiency (Wan et al., 2023), these studies
primarily focus on individual aspects rather than
a holistic perspective. Our survey fills this gap by
systematically examining these methods through
the lens of data efficiency, offering critical insights
into maximizing data value extraction.

2 Taxonomy

This section categorizes data-efficient post-training
methods for LLMs into five core methodologies:
• Data Selection: Filtering high-value subsets

from raw data. ❶ Static Filtering: Offline se-
lection based on data properties; ❷ Dynamic
Selection: Adjusting weights based on model
uncertainty; ❸ Agent Strategy: Multi-model vot-
ing for reliable selection; ❹ Labeling Efficiency:
Combining active learning and semi-supervised
strategies for cost-effective sample coverage.

• Data Quality Enhancement: Improving the util-
ity of existing data. ❶ Semantic Rewriting: En-
hancing expression diversity through semantic-
preserving transformations and generating vari-
ants while maintaining original meaning; ❷ Tox-
icity Control: Correcting harmful content; ❸

Distribution Stabilization: Adjusting data char-
acteristics for robustness

• Synthetic Data Generation: Creating new
training data. ❶ Instruction-Driven: Model-
generated instruction-response pairs; ❷

Knowledge-Guided: Generation with struc-

Category Data Compute Model Data Value
Dependency Cost Dependency Mining

Data Selection ++ + + +++
Quality Enhance. ++ ++ ++ ++
Synthetic Generation + +++ +++ +
Distill. & Compress. + + +++ +++
Self-Evolving + +++ +++ +++

Table 1: Comparison of different data-efficient post-
training methods across key dimensions.

tured knowledge; ❸ Adversarial Generation:
Producing challenging samples.

• Data Distillation and Compression: Extracting
core knowledge for efficient training. ❶ Model
Distillation: Transferring large model output dis-
tributions to smaller models while preserving
key knowledge; ❷ Data Distillation: Extracting
high information density samples to construct
compact datasets equivalent to full-scale data; ❸

Joint Compression: Combining model architec-
ture compression with data selection strategies
for end-to-end efficiency optimization

• Self-Evolving Data Ecosystem: Building self-
evolution mechanisms. ❶ Self-Iterative Opti-
mization: Using current model to generate data;
❷ Dynamic Evaluation Feedback: Real-time
monitoring and adjustment; ❸ LLM-as-a-Judge:
Feedback-Driven Data Optimization;
Table 1 compares the five methodologies across

key dimensions, where more ’+’ indicates higher
requirements or better performance. Data selec-
tion shows high data efficiency but requires quality
source data. Quality enhancement maintains bal-
anced requirements across dimensions. Synthetic
generation and self-evolving approaches demand
more compute and model resources but reduce de-
pendency on original manually annotated datasets,
as they primarily rely on teacher model outputs or
self-generated data. Distillation methods excel in
data efficiency while depending on model capabili-
ties.

These five dimensions complement each other:
selection filters quality data, enhancement im-
proves utility, generation expands coverage, distil-
lation concentrates knowledge, and self-evolution
enables continuous improvement. Together, they
pursue the goal of less data, higher returns.

3 Data Selection

Data selection is crucial for enhancing LLM post-
training efficiency by identifying high-value data
subsets. As shown in Figure 3, we divide existing
approaches into four dimensions: (1) static filter-
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Data Selection
§3

Static Filtering
§3.1

Alpagasus(Chen et al., 2023), MoDS(Du et al., 2023), LLM-Pruner(Ma et al., 2023),
LIFT(Xu et al., 2023), CoachLM(Liu et al., 2024a), LESS(Xia et al., 2024), In-
stag(Lu et al., 2023), LLM-Select(Jeong et al., 2024)

Dynamic Selection
§3.2

Active Instruction Tuning(Kung et al., 2023), Self-Guided Data Selection(Li et al.,
2023b), Sample-Efficient Alignment(Liu et al., 2024b)

Agent Strategy
§3.3

CLUES(Zhao et al., 2024b), DATA ADVISOR(Wang et al., 2024a)

Labeling Efficiency
§3.4

CoAnnotating(Li et al., 2023c), SELF-INSTRUCT(Wang et al., 2023), Experimental
Design(Bhatt et al., 2024)

Data Quality
Enhancement

§4

Semantic Rewriting
§4.1

PGA-SciRE (Zhou et al., 2024a), AutoLabel (Ming et al., 2024), LLM2LLM (Lee
et al., 2024b), Data is all you need(Chang et al., 2024), LLM-DA(Ye et al., 2024),
AugGPT (Dai et al., 2025), PDFChatAnnotator (Tang et al., 2024)

Toxicity Control
§4.2

TOXIGEN (Hartvigsen et al., 2022), ToxiCraft (Hui et al., 2024), Toxicity in CHAT-
GPT (Deshpande et al., 2023), People Make Better Edits (Sen et al., 2023)

Distribution
Stabilization

§4.3

Diversify and Conquer (Yu et al., 2024), Multi-News+ (Choi et al., 2024), Condi-
tional Label Smoothing (Becker et al., 2024), Dynosaur (Yin et al., 2023), Optima
(Chen et al., 2024b), SEC (Li et al., 2024b), Rad (Seo et al., 2024)

Synthetic Data
Generation

§5

Instruction-Driven
§5.1

SynPO (Dong et al., 2024), Magpie (Xu et al., 2024c), Advancing Theorem Proving
(Xin et al.), LLM-AutoDA (Wang et al., 2024d), Mini-DA (Yang et al., 2024a)

Knowledge-Guided
§5.2

HARMONIC (Wang et al., 2024h), Condor (Cao et al., 2025), Source2Synth (Lupidi
et al., 2024)

Adversarial Generation
§5.3

Illuminating Blind Spots (Lippmann et al., 2024), Synthetic Oversampling (Nakada
et al., 2024), Unveiling the Flaws (Chen et al., 2024a),

Data Distillation
and Compression

§6

Model Distillation
§6.1

Distillation Matters (Cui et al., 2024), BitDistiller (Du et al., 2024), Towards Cross-
Tokenizer Distillation(Boizard et al., 2024), Impossible Distillation (Jung et al.,
2023), XAI-Driven Knowledge Distillation (Cantini et al., 2024)

Data Distillation
§6.2

LLMLingua-2 (Pan et al., 2024c), LESS (Xia et al., 2024), Self-Data Distillation
(Thangarasa et al., 2024), Multi-Teacher Distillation (Zhang et al., 2024b),

Joint Compression
§6.3

Efficient Edge Distillation (Cantini et al., 2024), Prompt Distillation (Li et al.,
2023a), CourseGPT-zh (Qu et al., 2024)

Self-Evolving Data
Ecosystem

§7

Self-Iterative
Optimization

§7.1

Self-Rewarding Language Models (Yuan et al., 2024b), Self-Refine (Madaan et al.,
2024), Self-Boosting (Dong et al., 2024), Self-Play Fine-Tuning (Chen et al., 2024c),
MEMORYLLM (Wang et al., 2024g), Arxiv Copilot (Lin et al., 2024a)

Dynamic Evaluation
Feedback

§7.2

LLM-Evolve (You et al., 2024), Self-Log (Pei et al., 2024), I-SHEEP (Liang et al.,
2024b), Meta-Rewarding (Wu et al., 2024), Self-Evolved Reward Learning (Huang
et al., 2024)

LLM-as-a-Judge
§7.3

Self-Taught Evaluators (Wang et al., 2024f), Judgelm (Zhu et al., 2023), CalibraEval
(Li et al., 2024a), Crowd Score (Goes et al., 2022), R-Judge (Yuan et al., 2024a),

Figure 2: A taxonomy of Data-Efficient LLM Post Training.

ing based on inherent data properties, (2) dynamic
selection that adapts during training, (3) agent strat-
egy using collaborative mechanisms, and (4) label-
ing efficiency through human-AI collaboration.

3.1 Static Filtering

Static filtering evaluates inherent data properties
offline to identify samples with high information
density and representativeness.
Quality-based Filtering. Alpagasus (Chen et al.,
2023) achieves comparable performance using only
17% of the original data through complexity-based
filtering (instruction length, diversity, and perplex-
ity). MoDS (Du et al., 2023) employs multi-
dimensional indicators and density peak cluster-
ing, while (Kang et al., 2024) uses KL-divergence-

driven selection to align domain distributions.
Information-theoretic approaches (Kim and Baek,
2024) leverage entropy metrics using negative log-
likelihood and inverse word frequency to identify
redundant samples. ActivePrune (Azeemi et al.,
2024) implements two-stage pruning through n-
gram perplexity scoring followed by quantized
LLM evaluation. CoT-Influx (Huang et al.,
2023) employs coarse-to-fine pruning for reason-
ing enhancement in mathematical tasks. LLM-
Select (Jeong et al., 2024) demonstrates that large
language models can perform feature selection us-
ing only feature names and task descriptions, rival-
ing traditional data science tools.

Semantic Enhancement. LIFT (Xu et al., 2023) en-
hances instruction quality through automatic revi-



Figure 3: Overview of four major data selection ap-
proach categories: static filtering, dynamic selection,
agent strategy, and labeling efficiency.

sion. InsTag (Lu et al., 2023) proposes fine-grained
instruction tagging to analyze diversity and com-
plexity in supervised fine-tuning datasets, demon-
strating that model capability grows with more di-
verse and complex data.

3.2 Dynamic Selection
Dynamic methods adapt data weights by evaluating
sample importance based on model feedback.
Uncertainty-driven Selection. Active Instruc-
tion Tuning (Kung et al., 2023) prioritizes high-
uncertainty tasks through prediction entropy. Self-
Guided Data Selection uses Instruction Following
Difficulty (IFD) to measure loss variance and elim-
inate easily learned examples (Li et al., 2023b).
Optimization-based Selection. Sample-efficient
alignment (Liu et al., 2024b) uses Thompson
sampling to maximize contribution in preference
alignment tasks. Compute-constrained data selec-
tion (Yin and Rush, 2024) optimizes between data
utility and computational cost. P3 (Yang et al.,
2024b) integrates policy-driven difficulty assess-
ment with pace-adaptive selection and diversity
promotion through Determinantal Point Process.
LESS (Xia et al., 2024) employs optimizer-aware
gradient similarity search with low-rank gradient
features for targeted instruction tuning. In domain-
specific applications, data pruning methods (Lin
et al., 2024b) use influence and effort scores to
identify representative samples.

3.3 Agent Strategy
Agent-based approaches leverage collaborative
mechanisms for reliable selection.
Multi-agent Consensus. Multi-agent methods like
CLUES (Zhao et al., 2024b) implement multi-
model voting mechanisms based on training dy-
namics and gradient similarity metrics.

Adversarial Enhancement. Recent works like
DATA ADVISOR (Wang et al., 2024a) uses red-
team agents for safety filtering, while Automated
Data Curation (Chen and Mueller, 2024) optimizes
data through generator-discriminator frameworks.

3.4 Labeling Efficiency
These methods efficiently optimize annotation pro-
cesses through iterative human-AI collaboration.
Human-AI Collaboration. Methods like LL-
MaAA (Zhang et al., 2023a) employ LLMs as
annotators with uncertainty sampling. CoAnno-
tating (Li et al., 2023c) implements uncertainty-
guided labor division between humans and AI.
Automated Generation. SELF-INSTRUCT (Wang
et al., 2023) enables autonomous self-generated
instruction data, while (Li et al., 2023d) uses one-
shot learning for rapid sample identification.
Workflow Optimization. Recent works establish
scalabel efficient annotation workflows through
adaptive experimental design (Bhatt et al., 2024)
and systematic curation systems (Pang et al., 2024).

3.5 Discussion
Current data selection approaches face challenges
in aligning static metrics with dynamic model re-
quirements, managing computational complexity
in optimization, and achieving cross-domain gen-
eralization. Future research points toward meta-
learning-based selection frameworks, causal infer-
ence for sample analysis, and efficiency-aware op-
timization with hardware constraints, advancing
data selection toward theoretical grounding.

4 Data Quality Enhancement

As illustrated in Figure 4, enhancing data quality is
critical for maximizing the effectiveness of LLM
post-training (Zhou et al., 2024b). Through seman-
tic refinement, toxicity control, and distribution
stabilization, researchers aim to improve the in-
formativeness, safety, and robustness of training
data. We categorize existing methods into three
directions.

4.1 Semantic Rewriting
Semantic rewriting focuses on augmenting data di-
versity while preserving original meaning through
controlled transformations. This can be achieved
through several key approaches:
Instruction Refinement. CoachLM (Liu et al.,
2024a) automatically revises complex instructions
to reduce ambiguity, while (Li et al., 2024c) uses



Figure 4: Three key approaches for data quality en-
hancement in LLM post-training: semantic rewriting
for diversity, toxicity control for safety, and distribution
stabilization for balanced representation.

structured prompt chains for paraphrase generation,
enhancing model generalization across tasks.
Domain-Specific Augmentation. Methods like (Jia
et al., 2024) use curriculum learning for metaphor
detection, while PGA-SciRE (Zhou et al., 2024a)
injects structured knowledge for scientific relation
extraction, adapting models to specialized tasks.
Automated Enhancement. AutoLabel (Ming et al.,
2024) seamlessly integrates human feedback for
quality rewriting, while LLM2LLM (Lee et al.,
2024b) iteratively improves low-confidence sam-
ples. LANCE (Wang et al., 2024c) enables LLMs
to autonomously generate, clean, review, and an-
notate data, serving as continuous self-evolving
data engineers. Recent studies extensively explore
human-AI collaboration (Chung et al., 2023) and
various data types: text (Dai et al., 2025), tabu-
lar (Banday et al., 2024), and multimodal (Tang
et al., 2024). LLM-DA (Ye et al., 2024) employs
contextual rewriting strategies with entity-level re-
placements for few-shot NER tasks, while (Zhang
et al., 2025) leverages lightweight LLM generation
and tree hybridization for cross-domain parsing
augmentation.

4.2 Toxicity Control

Mitigating harmful content is crucial for data qual-
ity enhancement. Recent approaches focus on de-
tection, benchmarking, and human collaboration:
Detection Frameworks. Methods like (Zhang et al.,
2024a) effectively distill toxicity knowledge into
compact detectors, while (Wang and Chang, 2022)
strategically leverages generative prompts for zero-
shot toxicity classification across diverse tasks.
Adversarial Benchmarking. Frameworks such
as TOXIGEN (Hartvigsen et al., 2022) and Tox-
iCraft (Hui et al., 2024) generate adversarial

datasets to stress-test models. Studies (Luong et al.,
2024; Deshpande et al., 2023; Chetnani, 2023;
Oh et al., 2024) examine the relationship between
model size and toxicity generation, finding that
smaller models often exhibit lower toxicity rates.
Human-AI Collaboration. Research demonstrates
that human intervention significantly improves toxi-
city detection quality (Sen et al., 2023), particularly
through counterfactual data augmentation. Addi-
tional work explores covert toxicity detection (Lee
et al., 2024a), data contamination (Balloccu et al.,
2024), and geometric interpretability (Balestriero
et al., 2024) to enhance model safety.

4.3 Distribution Stabilization
Stabilizing data distribution ensures that models
generalize well across different tasks and domains.
Several methods tackle issues like class imbalance,
noise reduction, and domain adaptation:
Imbalance Mitigation. Approaches like Synthetic
Oversampling (Nakada et al., 2024) and Diversify
and Conquer (Yu et al., 2024) effectively address
class imbalance through adaptive synthetic sam-
ple generation. Studies show significant improve-
ments, with (Cai et al., 2023) demonstrating a 38%
fairness boost in cross-disciplinary applications.
Noise Reduction. Multi-News+ (Choi et al., 2024)
signficantly reduces annotation errors through au-
tomated label correction, while (Chen and Mueller,
2024) employs self-supervised filtering for robust
fine-tuning data curation. RobustFT (Luo et al.,
2024) introduces a comprehensive framework for
handling noisy response data through multi-expert
collaborative noise detection and context-enhanced
relabeling strategies, coupled with entropy-based
data selection for high-quality sample retention.
Domain Adaptation. ChatTS (Xie et al., 2024)
uses Fourier transforms for time-series alignment,
while (Becker et al., 2024) applies domain-specific
label smoothing for clinical text. Advanced ap-
proaches like Dynosaur (Yin et al., 2023) and Op-
tima (Chen et al., 2024b) leverage curriculum learn-
ing and multi-source coordination. RADA (Seo
et al., 2024) addresses low-resource domain tasks
by retrieving relevant instances from other datasets
and generating contextually enhanced samples
through LLM prompting.

4.4 Discussion
Semantic rewriting, toxicity control, and distribu-
tion stabilization represent key strategies for im-
proving data quality in LLM post-training. These



Figure 5: Three main approaches for data generation
in LLM post-training: instruction-driven generation for
creating instruction-response pairs, knowledge-guided
generation using structured knowledge, and adversarial
generation for testing model robustness.

techniques ensure the generation of diverse, high-
quality data, mitigate harmful content, and stabilize
data distributions to enhance model robustness. Fu-
ture work should integrate these approaches into
unified frameworks to maximize data diversity and
model performance while reducing costs.

5 Synthetic Data Generation

Generating synthetic training data is a powerful
strategy to overcome data scarcity and enhance
the robustness of LLM post-training. As illus-
trated in Figure 5, synthetic data generation meth-
ods can be categorized into three main approaches:
Instruction-Driven, Knowledge-Guided, and Adver-
sarial Generation, each serving distinct purposes
in enhancing model capabilities.

5.1 Instruction-Driven Synthetic Data
Generation

Instruction-driven methods harness LLMs’ abil-
ity to produce new examples directly from task
prompts. Recent works demonstrate diverse ap-
plications: SynPO (Dong et al., 2024) generates
preference pairs for alignment (12% ROUGE-
L improvement), Magpie (Xu et al., 2024c) en-
ables template-free instruction generation (98%
AlpacaEval accuracy), and Advancing Theorem
Proving (Xin et al.) synthesizes Lean4 proof steps,
boosting GPT-4’s proving capabilities by 34%.

5.2 Knowledge-Guided Synthetic Data
Generation

Knowledge-guided approaches integrate external
knowledge to steer data generation.
Theoretical Frameworks. Towards a Theoretical
Understanding (Gan and Liu, 2024) rigorously es-

tablishes a reverse-bottleneck theory linking data
diversity to enhanced model generalization.
Structured Data Synthesis. HARMONIC (Wang
et al., 2024h) combines privacy-preserving tabu-
lar data generation on medical records. (Xu et al.,
2024b) improves relational consistency through
schema-aware fine-tuning.
Cost-Effective Strategies. (Chan et al., 2024)
demonstrates hybrid generation methods reduce
API costs by 70% while maintaining data utility.
Source2Synth (Lupidi et al., 2024) improves fac-
tual accuracy through knowledge-graph alignment.

5.3 Adversarial Generation
Adversarial generation methods systematically
probe model vulnerabilities to enhance robustness.
Recent works demonstrate diverse approaches: Illu-
minating Blind Spots (Lippmann et al., 2024) uses
agent-based simulations to generate edge cases,
reducing errors by 19% on dialect variation; Un-
veiling Synthetic Data Flaws (Chen et al., 2024a)
introduces contrastive unlearning to address data
imperfections, yielding 32% quality improvements
on GLUE; and ToxiCraft (Hui et al., 2024) gener-
ates subtle harmful content, revealing significant
gaps in commercial safety filters.

5.4 Discussion
Each approach offers distinct trade-offs:
instruction-driven methods enable rapid scaling but
risk semantic drift; knowledge-guided approaches
maintain fidelity through structured constraints;
and adversarial generation strengthens robustness
by exposing vulnerabilities. Future work should
combine these strengths—for instance, merging
privacy-preserving generation with adversarial
testing. Key challenges persist in optimizing
generation costs (Chan et al., 2024) and developing
theoretical foundations (Gan and Liu, 2024).

6 Data Distillation and Compression

Data distillation and compression techniques en-
hance LLM post-training efficiency by reducing
data complexity while preserving performance. As
shown in Figure 6, this involves three complemen-
tary approaches: model distillation for knowledge
transfer, data distillation for dataset compression,
and joint compression for unified optimization.

6.1 Model Distillation
Model distillation transfers knowledge from large
to smaller models while maintaining perfor-



Figure 6: Data distillation and compression in LLM
post-training: model distillation for knowledge transfer,
data distillation for sample extraction, and joint com-
pression for unified optimization.

mance. Recent advances include Impossible Dis-
tillation (Jung et al., 2023), which creates high-
quality models from low-quality teachers, and
Performance-Guided Distillation (Di Palo et al.,
2024), achieving 98% accuracy with 40% reduced
costs. Cross-Tokenizer Distillation (Boizard et al.,
2024) enables knowledge transfer between differ-
ent architectures through universal logit distilla-
tion. For edge deployment, XAI-Driven Distilla-
tion (Cantini et al., 2024) produces interpretable
medical models, while BitDistiller (Du et al., 2024)
enables sub-4-bit precision with minimal accuracy
loss. Multistage Collaborative Distillation (Zhao
et al., 2024a) improves performance through multi-
teacher coordination in low-resource settings.

6.2 Data Distillation

Data distillation focuses on selecting high-
information-density samples to create compact
yet representative datasets. Knowledge Distil-
lation in Automated Annotation (Pangakis and
Wolken, 2024) shows LLM-generated labels can
effectively train classifiers comparable to human
annotations. LLMLingua-2 (Pan et al., 2024c)
approaches prompt compression through token-
level distillation. Domain-specific applications
include Self-Data Distillation (Thangarasa et al.,
2024) for model refinement, Multi-Teacher Dis-
tillation (Zhang et al., 2024b) for healthcare data
integration, and techniques for reducing hallucina-
tion (McDonald et al., 2024).

6.3 Joint Compression

Joint compression combines model compression
with data selection to optimize overall efficiency.
Compact Language Models via Pruning and Dis-

Figure 7: Self-Evolving Data Ecosystem: autonomous
data generation, real-time feedback, and continuous
learning.

tillation (Muralidharan et al., 2024) co-optimizes
structural pruning and label smoothing, compress-
ing LLaMA-7B to 2.8B parameters with minimal
performance loss. Efficient Edge Distillation (Can-
tini et al., 2024) enables adaptive width scaling for
edge devices through supernet training. In recom-
mendation systems, Prompt Distillation (Li et al.,
2023a) aligns ID-based and text-based representa-
tions, aiming to reduce inference time.

For multimodal applications, recent work
demonstrates joint compression of graph and text
encoders (Pan et al., 2024a) and curriculum-aligned
prompt distillation for educational LLMs (Qu et al.,
2024), achieving significant parameter reduction
while maintaining performance.

6.4 Discussion
These three approaches offer complementary bene-
fits for enhancing LLM efficiency: model distilla-
tion optimizes architecture, data distillation curates
high-impact samples, and joint compression unifies
model-data optimization. Future research should
focus on integrating these methods, particularly for
edge AI and low-resource applications.

7 Self-Evolving Data Ecosystem

The Self-Evolving Data Ecosystem strategically
optimizes LLM post-training through autonomous
data generation, real-time feedback, and continu-
ous learning. As shown in Figure 7, this ecosystem
forms a closed loop of generation, evaluation, and
adaptive training. We discuss three key compo-
nents: Self-Iterative Optimization, Dynamic Evalu-
ation Feedback, and LLM-as-a-Judge.

7.1 Self-Iterative Optimization
Self-iterative optimization enables LLMs to use
their own outputs to generate new training data,



refining their capabilities autonomously. Several
approaches illustrate this concept:
Self-Improvement Methods. Recent works
like Self-Rewarding (Yuan et al., 2024b),
Self-Refine (Madaan et al., 2024), and Self-
Boosting (Dong et al., 2024) enable models to
autonomously improve through iterative self-
optimization. Self-Play Fine-Tuning (Chen et al.,
2024c) extends this by leveraging competitive
self-interaction, outperforming traditional methods
like DPO (Rafailov et al., 2024).
Semi-Supervised Self-Evolution. In practical de-
ployment scenarios, models often encounter lim-
ited labeled seed data alongside abundant un-
labeled domain-specific data, creating a critical
challenge for effective post-training adaptation.
SemiEvol (Luo et al., 2025a) addresses this chal-
lenge through a propagate-and-select framework
that transfers knowledge from seed data to unla-
beled samples via bi-level propagation and collab-
orative selection mechanisms.
Knowledge Retention. In the context of retain-
ing knowledge while integrating new data, Mem-
oryLLM (Wang et al., 2024g) enables continuous
model updates while preserving existing knowl-
edge. Automated Proof Generation (Chen and
Mueller, 2024) and Arxiv Copilot (Lin et al.,
2024a) demonstrate this capability in code veri-
fication and academic research tasks.

7.2 Dynamic Evaluation Feedback
Dynamic evaluation feedback systems allow mod-
els to make real-time adjustments based on their
performance, optimizing their outputs on the fly.
Key contributions include:
Multi-Agent Evaluation. The Benchmark Self-
Evolving Framework (Wang et al., 2024e) and
LLM-Evolve (You et al., 2024) employ multi-agent
systems to evaluate and adjust LLM performance
dynamically. These frameworks enable the models
to self-adjust in real-time across various bench-
marks, ensuring continuous evolution.
Iterative Refinement Self-Refine (Madaan et al.,
2024) and Self-Log (Pei et al., 2024) employ feed-
back loops for iterative refinement and log parsing,
optimizing the model’s output without requiring
external retraining.I-SHEEP (Liang et al., 2024b)
offers a resource-efficient paradigm that enhances
performance through self-alignment, while Interac-
tive Evolution: A Neural-Symbolic Self-Training
Framework (Xu et al., 2024a) enables LLMs to au-
tonomously train in neural-symbolic environments.

Improved Decision Making. For improving model
alignment, Meta-Rewarding (Wu et al., 2024) and
Self-Evolved Reward Learning (Huang et al., 2024)
leverage iterative feedback from their outputs to
improve judgment skills, ensuring more accurate
decision-making in complex tasks.

7.3 LLM-as-a-Judge

LLM-as-a-Judge systems represent a paradigm
shift from external evaluation to self-assessment,
where models evaluate their own or other models’
outputs. These systems operate through three fun-
damental mechanisms, each addressing different
evaluation challenges:
Self-Improvement through Judgment. These
methods focus on improving a model’s ability to
assess quality. Self-Taught Evaluators (Wang et al.,
2024f) and Meta-Rewarding (Wu et al., 2024) take
distinct approaches: the former generates synthetic
comparisons to train judgment without human
data, while the latter introduces meta-judgment
by having models critique their own evaluations.
JudgeLM (Zhu et al., 2023) takes a different path
by fine-tuning models on human preferences to
create specialized evaluation models.
Debiasing Evaluation Systems. These methods
address fairness concerns in automated evaluation.
CalibraEval (Li et al., 2024a) recalibrates predic-
tion distributions to mitigate position bias, while
Crowd Score (Goes et al., 2022) employs multiple
AI personalities within a single model to simulate
diverse human judgments, reducing individual bias
through aggregation.
Adversarial Robustness Testing. These approaches
stress-test models through challenging scenarios.
TOXIGEN (Hartvigsen et al., 2022) and Toxi-
Craft (Hui et al., 2024) create progressively more
subtle toxic content to expose blind spots, while
R-Judge (Yuan et al., 2024a) specifically targets
situational safety risks in interactive environments
rather than just content harmfulness.

7.4 Discussion

The combination of Self-Iterative Optimization,
Dynamic Evaluation Feedback, and LLM-as-a-
Judge creates a robust framework for autonomous
LLM improvement. While these approaches show
promise in reducing manual intervention, future
work should focus on unifying them into scalable
frameworks that generalize across diverse tasks.



8 Challenges and Future Directions

Domain-Driven Data Synthesis and Refinement.
While general-purpose models like GPT are com-
monly used for data generation (Di Palo et al.,
2024), domain-specific models can better capture
professional knowledge (Lightman et al., 2023).
Future work should explore domain-specific pre-
trained models for generating specialized data (Luo
et al., 2023; Cheng et al., 2024), along with re-
finement techniques to optimize data quality while
reducing annotation costs.
Scalability of Large-Scale Data Synthesis. As
LLM pre-training demands increasingly larger and
higher-quality datasets, efficient large-scale data
generation becomes crucial. Current data synthesis
and augmentation methods face scalability bottle-
necks. Future work should focus on developing par-
allel, cost-effective, and efficient data generation
frameworks that meet the demands of large-scale
pre-training while maintaining a balance between
data diversity and relevance (Karunya et al., 2023).
Reliable Quality Assessment Metrics. Current
evaluation frameworks lack standardized metrics
for assessing synthetic data quality (Zendel et al.,
2024). Future research should develop metrics that
evaluate semantic fluency, information accuracy,
and potential biases (Chundawat et al., 2022; Ger-
stgrasser et al., 2024) to ensure robust selection.

9 Conclusion

In this paper, we presented a systematic review of
LLM post-training research from a data efficiency
perspective. We established the first taxonomic
framework for data-efficient post-training, encom-
passing five core methodologies. Through detailed
analysis of representative approaches within each
category, we revealed that breaking through data ef-
ficiency bottlenecks requires establishing value ex-
traction mechanisms across the entire data lifecycle.
We aimed to highlight the current state and provide
valuable insights for future work in this promising
field of data-efficient LLM post-training.

Limitations

While our work presents the first comprehensive
framework for analyzing data-efficient LLM post-
training approaches, several limitations and oppor-
tunities for future research remain. First, given
the explosive growth of this field, some emerg-
ing techniques may not be fully captured in our
current taxonomic system, necessitating continu-

ous updates to maintain comprehensiveness. Sec-
ond, while data efficiency is crucial, the proposed
methods may face additional challenges regard-
ing trustworthiness and scalability that warrant fur-
ther investigation. Furthermore, the synergistic
effects and interaction mechanisms between dif-
ferent data efficiency enhancement techniques re-
main underexplored, calling for the development of
cross-method optimization theories. We anticipate
these open challenges will inspire deeper theoreti-
cal innovations and practical breakthroughs.
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A Statistics

To demonstrate the research momentum in data-
efficient LLM post-training, we conducted a statis-
tical analysis of the surveyed papers. As shown in
Figure 8, there has been a remarkable growth tra-
jectory in this field: from merely 3 publications in
2022 to 31 papers in 2023, followed by a substan-
tial surge to 158 papers in 2024, with 23 additional
publications already recorded by February 2025.
This trend clearly indicates the academic commu-
nity’s growing interest in this research direction,
with the momentum continuing to accelerate. The
rapid growth also underscores the critical impor-
tance of data-efficient post-training approaches in
the LLM domain.
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Figure 8: Distribution on publication year of surveyed
papers.

Furthermore, we performed a word frequency
analysis on the titles of all surveyed papers and gen-
erated a word cloud visualization (Figure 9). The



word cloud reveals key methodological focal points
in current research, with augmentation, synthetic,
generation, and alignment emerging as prominent
themes. The significant presence of terms like fine-
tuning, distillation, and efficient underscores the
field’s emphasis on optimizing model training pro-
cesses. These visualizations demonstrate the cen-
trality of data-centric approaches and synthetic data
methodologies in advancing LLM post-training ef-
ficiency.

Research Paper Titles Word Cloud

Figure 9: Word cloud of research paper titles.

The analysis demonstrates that data-efficient ap-
proaches to LLM post-training represent not only
an emerging trend but also a fundamental research
direction with significant implications for the ad-
vancement of language models.

B Takeaway Insights

B.1 Key Findings

Recent advancements in data-efficient LLM post-
training reveal fundamental principles governing
data-model interactions:

(1) The data flywheel paradigm integrates selection,
augmentation, and evolution into a closed-loop
lifecycle. This self-reinforcing mechanism en-
ables continuous quality improvement through
iterative refinement, transcending traditional lin-
ear data consumption

(2) Value-centric data curation outperforms scale-
driven approaches in low-resource scenarios.
Techniques like adaptive importance weighting
and uncertainty-aware sampling maximize infor-
mation density per training instance

(3) Model-data co-optimization enables joint im-
provements in efficiency and performance
through innovations like dynamic token prun-
ing and parameter-efficient adaptation

B.2 Paradigm Shifts

The field is witnessing fundamental changes in data
utilization:

(1) Evolution from static datasets to dynamic
value-flow ecosystems where data continuously
evolves through model feedback. This necessi-
tates new frameworks for monitoring data qual-
ity and lineage across iterations

(2) Emergence of human-AI collaborative frame-
works combining automated generation with
expert oversight. These hybrid pipelines lever-
age LLMs for initial labeling while preserving
human judgment for critical cases

(3) Development of cross-modal distillation tech-
niques that maintain semantic fidelity while re-
ducing architectural constraints through learned
alignment spaces

B.3 Critical Limitations

Current approaches face several key challenges:
(1) Limited domain expertise in data synthesis

and refinement, where general-purpose models
may fail to capture specialized knowledge and
nuances required for professional domains

(2) Scalability bottlenecks in large-scale data gen-
eration, particularly in balancing computational
costs with the need for diverse, high-quality
datasets for pre-training

(3) Absence of standardized metrics for assessing
synthetic data quality, especially in evaluating
semantic fluency, information accuracy, and po-
tential biases

B.4 Future Directions

Addressing these limitations requires advances in:
(1) Domain-specific pre-trained models and refine-

ment techniques that can better capture profes-
sional knowledge while optimizing data quality
and reducing annotation costs

(2) Parallel and cost-effective frameworks for
large-scale data generation that maintain an op-
timal balance between data diversity and rele-
vance

(3) Robust evaluation metrics and frameworks
that can reliably assess synthetic data quality
across different domains and use cases
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D Literature Review Summary

To provide a comprehensive overview of the sur-
veyed literature, we present a detailed summary
table of all referenced papers. The table includes
seven key fields for each paper: Title (the paper’s
full title), Citation (reference key), TLDR (a brief
summary of the paper’s main contributions), Cate-
gory (the paper’s primary research direction within
data-efficient LLM post-training), Year (publica-
tion year), Venue (publication venue), and Link
(direct link to the paper). This structured compi-
lation offers readers quick access to the original
papers, enables easy tracking of research evolution
across different categories, and facilitates future
research by providing a comprehensive reference
database of the field’s development.
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