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Abstract—Graph Neural Networks (GNNs) have emerged as
an effective tool for graph classification, yet their reliance on
extensive labeled data poses a significant challenge, especially
when such labels are scarce. To address this challenge, this paper
presents a novel framework, denoted as Multi-View Teacher
with Curriculum Data Fusion (MTDF). MTDF achieves robust
unsupervised domain adaptation in both the model and data
perspectives. On the one hand, MTDF utilizes a multi-teacher
framework with diverse update strategies for robust adaptation.
Moreover, it employs a complementary perspective consistency
model from local implicit representation and global explicit graph
structure. On the other hand, MTDF generates source-mimicry
data at the target domain to serve as a bridge to overcome the
challenge of domain shift. MTDF achieves stable unsupervised
domain adaptation through bi-directional processes from the
perspective of both the model and the data. We have conducted
comprehensive experimental evaluations across multiple real-
world datasets with a range of baseline methods to demonstrate
the superior performance of our proposed method.

Index Terms—Graph Neural Network, Unsupervised Domain
Adaptation

I. INTRODUCTION

Graph Neural Networks (GNNs) have achieved great suc-

cess in a wide range of domains, including molecular struc-

tures [1], [2], social networks [3], [4] traffic networks [5]–

[8], industry [9] and relational databases [10], [11]. Among

them, graph classification aims to predict the labels of entire

graphs [12]–[14]. Most of these strategies adopt the message-

passing paradigm [15], followed by a readout operator to

summarize the node-level representations to graph-level rep-

resentations for downstream classifications. However, real-

world situations frequently face Out-of-Distribution (OOD)

challenges, which occur when the data distribution during

inference differs from what has been experienced during

training [16]–[18]. The fundamental problem is exacerbated by

the scarcity of labeled data in these new areas of application,

making supervised adaptation impractical [19], [20].

Unsupervised Domain Adaptation (UDA) aims to use la-

beled data from a source domain to perform tasks in an

unlabeled target domain [21], [22]. In UDA, approaches

have demonstrated proficiency, particularly for Euclidean data,

† equal contribution. § corresponding author.

e.g., Mean-Teacher [23] apply a student-teacher paradigm to

maintain prediction consistency between teacher model (an

exponential moving average of student model) and student

model. However, when it comes to graph data, the training

process encounters difficulties and may even deteriorate the

model’s performance, as illustrated in Figure 1a. We attribute

this to two under-explored dilemmas.

(1) How to overcome the label scarcity on the target
domain? The scarcity of labeled data in the target domain

is a persistent barrier in UDA for graphs. While pseudo-

labels show potential in bridging this gap [24], [25], their

vulnerability to noise makes them less reliable. Figure 1b il-

lustrates a common issue for models that train from the source

domain and apply to the target domain. Typically, such models

generate much less high-confidence predictions for the target

domain compared to the source domain. These noisy pseudo-

labels can introduce harmful self-reinforcing errors, which

can propagate through the edges during the training process,

ultimately resulting in poor domain adaptation performance.

(2) How to effectively reduce the domain discrepancy be-
tween source and target domains? Unlike Euclidean data,

graphs can vary significantly in structure and scale, leading

to differences in statistical properties of the source and target

graphs. As demonstrated in Figure 1c, embeddings obtained

from data of different domains with the same model ex-

hibit significant differences. Traditional domain adaptation ap-

proaches rely on aligning feature distributions [26]. However,

these methods struggle due to the complexity of graphs when

accounting for node features, edge connectivity, and higher-

order substructures. Consequently, carving out a method that

considers the complex interplay among these attributes to

bridge the domain discrepancy is a critical avenue in unsu-

pervised graph domain adaptation.

In addressing the aforementioned issues, we introduce a

new framework, Multi-View Teacher with Curriculum Data

Fusion (MTDF). This approach robustly tackles unsupervised

graph domain adaptation from both model and data perspec-

tives. On the one hand, MTDF utilizes different updating

strategies for teacher models to achieve robust domain adapta-

tion and stable optimization, including the booster teacher and

the stabilizer teacher. Furthermore, to fully extract topological
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(a) Training Difficulty

(b) Label Scarcity (c) Domain Discrepancy

Fig. 1: Motivation of MTDF, all from experiments on NCI1

dataset. (a) The training difficulty of UDA, which caused by

label scarcity and domain discrepancy. MTDF employs multi-

teacher and curriculum data fusion strategy to stabilize the

adaptation process. (b) Target label scarcity, illustrated by the

histogram of confidence score of the source-trained model.

MTDF mines the target domain from multi-view to extract

as much information as possible from limited resources. (c)
Domain discrepancy, illustrated by the t-SNE visualization

demonstrates. MTDF utilize curriculum data fusion strategy

to gradually achieve domain adaptation. Best viewed zoomed

in and in color.

information under label scarcity, MTDF uses information from

complementary perspectives in the target domain. One branch

is the message-passing branch, which focuses on implicit local

graph representations. The other is the graph motif branch,

which pays attention to the explicit topological information

of graphs, yielding explicit global graph structure represen-

tations. Through consistency learning, these branches interact

and serve as mutual teachers, generating more robust graph

representations. On the other hand, to address the domain

discrepancy, MTDF incorporates curriculum data fusion to

bridge the source and the target domains and achieve progres-

sive domain adaptation. MTDF gradually introduces structural

information of the target domain through a curriculum learning

approach, starting from the simple structure of the source

domain and progressively increasing the difficulty, making

the entire domain adaptation process more stable. The main

contributions of this paper can be summarized as follows:

• New Perspective. To tackle the issues of label scarcity

and domain discrepancy, we propose a new framework

that performs unsupervised domain adaptation bidirec-

tionally from both model and data perspectives, simul-

taneously achieving a stable adaptation process.

• New Method. Specifically, to address the scarcity of

labeled data, we utilize a stable optimization guided by

teachers with various update strategies, further reinforced

by robust graph learning, integrating consistency learning

from multiple complementary perspectives. To address

domain discrepancy, we employ data fusion through

curriculum learning, achieving a gradual and stable adap-

tation process.

• State-of-the-art Experimental Performance. Experi-

ments conducted on several graph classification bench-

mark datasets indicate that MTDF outperforms a va-

riety of established baselines by a significant margin.

Furthermore, we perform extensive ablation studies and

visualization for further analysis.

II. RELATED WORKS

A. Graph Classification

Graph classification has emerged as an important task across

several domains, such as social network analysis [27]–[33],

bioinformatics [34], industry [35], and cheminformatics [36],

[37], where the objective is to predict global properties of

entire graphs. While traditional graph classification approaches

heavily relied on graph kernels [38], [39] techniques that

measure the similarity between graphs by mapping them into a

high-dimensional feature space, recent advancements have piv-

oted towards Graph Neural Networks (GNNs) due to their su-

perior capability in learning graph representations [15], [40]–

[42]. These modern GNN-based methods leverage a message-

passing paradigm to update node embeddings and employ var-

ious pooling techniques to synthesize these embeddings into a

graph-level representation suitable for classification tasks [43].

Moreover, graph motif networks have further advanced GNNs

by leveraging recurring subgraph patterns to enrich graph

representations for classification [44]–[46]. Nevertheless, the

scarcity of labeled data in target domains necessitates un-

supervised domain adaptation to leverage auxiliary domain

knowledge. Addressing this challenge, our work capitalizes on

the use of limited pseudo-labeled data by consistency learning

from graph classification techniques with different structures.

B. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) [47], [48] has

emerged as a crucial strategy for transferring knowledge be-

tween labeled source data and unlabeled target domains [24],

[49]–[51], with extensive applications in fields like computer

vision [21], [25]. Prevailing methodologies revolve around

domain alignment and discrimination learning [52]–[56]. Do-

main alignment techniques have evolved from early endeavors

that leveraged statistical measure [57]–[59] to reduce domain

discrepancies to contemporary adversarial learning models

that harness gradient reversal layers and classifier collisions

to mitigate the impact of domain shifts [60]. Discrimination

learning, injected with insights from semi-supervised learn-

ing [61], [62], increasingly utilizes self-training to enhance
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performance on target domains [24], [25]. Methods such

as pseudo-labeling [63], where models generate labels by

themselves, coupled with techniques that focus on ensuring

those labels are reliable and that the model’s uncertainty is

reduced, are now commonly used to improve the ability of

classifiers to correctly identify data in the target domain [64],

[65]. While UDA has led to significant strides in com-

puter vision, including areas such as encompassing image

classification [21], semantic segmentation [25], and image

retrieval [66], its exploration in graph data domains is in the

early stages. There, the adaptation challenges are inherently

distinct owing to the structured nature of graph data. Initial

studies have tackled node classification within graphs [67], yet

comprehensive solutions in graph classification have remained

limited. Our work introduces an unsupervised domain adaptive

framework for graph classification, which achieves effective

domain alignment on the graph space. Expanding on this

research landscape, Wu et al. [68] propose the Denoising

and Nuclear-Norm Wasserstein Adaptation Network (DNAN),

which introduces a unique methodology utilizing the Nuclear-

norm Wasserstein discrepancy to address domain alignment

and class differentiation challenges in graph data.

C. Unsupervised Learning

Unsupervised learning in graph data offers a compelling

strategy to learning representations without labeled data, pri-

marily by capturing the intrinsic structure and features of

the graph. Building on Deep Graph Infomax (DGI) [69],

which maximizes mutual information between node repre-

sentations and a high-level summary of the entire graph,

InfoGraph [70] enhances this method by focusing on whole-

graph embeddings. While DGI is agnostic to graph labeling

and effective for node embeddings, InfoGraph recursively

applies the mutual information framework to derive embed-

dings conducive to graph classification tasks, extending the

utility of this unsupervised learning strategy from local node

features to global graph structures. Subsequent methods such

as [71] take inspiration from natural language processing

models like Doc2Vec [72] aim to learn latent document-like

representations of entire graphs. Graph data autoencoders, in-

cluding Graph Autoencoder (GAE) [73]and Variational Graph

Autoencoder (VGAE) [74], employ reconstruction objectives,

where they strive to build embeddings that can reconstruct

the original graph structure, yielding embeddings that pack

topological information. Graph Contrastive Learning [75],

[76] promotes learning by distinguishing between different

augmentations of the graph, thereby learning invariant fea-

tures robust to perturbations. These unsupervised techniques

facilitate the derivation of rich, informative features that could

potentially be transferable across domains, setting the stage for

improved unsupervised domain adaptation in graph models.

III. PRELIMINARIES

A. Problem Definition

In the context of graph-based learning, a graph is formalized

as G = (V, E), where V denotes the set of nodes and E ⊆ V×V

TABLE I: Frequently used notations

Notation Meaning

G = (V, E) A graph G with vertex set V and edge set E
X The feature matrix of node

Dso = {(Gso
i , ysoi )}Nso

i=1 Labeled source dataset with Nso graphs

Dta = {Gta
j }Nta

j=1 Unlabeled target dataset with Nta graphs

Φ(·) The GNN classifier

N (v) The set of neighbors of node v

Mk The motifs

W The Graphon Transformation Matrix, estimat-
ing the pairwise edge formation probabilities
of a dataset.

A The adjacency matrix of a graph.

δ, η The scaling factors of Graphon Transforma-
tion Matrix in data fusion.

β, γ The scaling factors of different losses.

represents the set of edges linking the nodes in V . Accompa-

nying the graph structure, a node feature matrix X ∈ R
|V|×d

contains the attribute information, with each row xv ∈ R
d

being the feature representation for node v ∈ V , and where d
indicates the dimension of node features. The unsupervised do-

main adaptation task aims to transfer the knowledge between

a labeled source domain Dso = {(Gso
i , ysoi )}Nso

i=1 , comprising

Nso graph examples Gso
i with corresponding labels ysoi , and

an unlabeled target domain Dta = {Gta
j }Nta

j=1, which contains

Nta graph examples Gta
j without label. Here, Dso and Dta are

sampled from an identical label space Y = {1, 2, . . . , C}, yet

exhibit differential data distributions within the graph domain

indicative of a domain shift. Our objective is to train predictive

models that perform well on Dta from a model trained by

labeled data in Dso, despite the lack of labels in the target

domain and the presence of distributional differences between

the domains. All these notations are summarized in Table I.

B. Graph Neural Networks

Given a graph G = (V, E) with node features X , the

representation of node v at the l-th layer of our GNN, denoted

as h
(l)
v , is recursively computed as follows. The neighborhood

aggregation stage at layer l synthesizes the feature information

from v’s immediate neighbors, formally:

a(l)v = AGG(l)
({

h(l−1)
u | u ∈ N (v)

})
, (1)

where N (v) represents the set of neighbors of node v, and

h
(l−1)
u stands for the representation of neighboring node u

from the prior iteration (l − 1). AGG(l) is the neighborhood

aggregation function applied at layer l.
Next, an update mechanism combines the aggregated neigh-

borhood features with the node’s existing features to produce

a new representation:

h(l)
v = UPD(l)

(
h(l−1)
v , a(l)v

)
, (2)
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with UPD(l) being the update function at iteration l, which

include non-linear transformations. After L iterations of

message-passing, the graph is represented by pooling the node

features from the last layer:

zG = READOUT
({

h(L)
v | v ∈ V

})
, (3)

where READOUT is a permutation invariant function, such

as sum, mean, or a graph-level pooling operation, to obtain an

entire graph’s representation, zG .

The classification of the graph is conducted using a multi-

layer perceptron (MLP) with a softmax activation to convert

the pooled graph representation into a probability distribution

over labels:

ŷG = Φ(G) = HEAD (zG) , (4)

where Φ represents the graph neural network, HEAD signifies

the MLP classifier, and ŷG is the predicted label distribution

for graph G.

During training on source domain graphs, the GNN’s pa-

rameters are optimized by minimizing the cross-entropy loss

between the predicted and ground true labels:

Lsource = − 1

Nso

Nso∑
i=1

log
(
ŷGso

i
[ysoi ]

)
, (5)

where ysoi are the ground truth labels of source graphs, and

ŷGso
i

are the corresponding predictions from the GNN.

IV. METHODOLOGY

A. Framework Overview

To address the challenge of domain discrepancy in unsu-

pervised graph domain adaptation, our proposed Multi-View

Teacher with Curriculum Data Fusion (MTDF) framework

takes a comprehensive approach, illustrated in Figure 2. As

a foundational step, we use the graph neural network (GNN)

trained on source data to generate pseudo-labels for the graphs

in the target domain. These initial pseudo-labels can be used

for subsequent adaptation steps.

The heart of MTDF lies a multi-teacher framework, de-

signed to ensure effective learning and stable progress. (See

Section IV-B) The first teacher, the booster, is designed to

encourage adaptability in the learning process. The second

teacher, the stabilizer, is assigned the task of maintaining a

steady process throughout training. Together, they guide the

learning process, allowing for adaptation to the target domain.

Following this, the multi-view framework comes into

play. (See Section IV-C) The motif-based network dives into

the high-level structural patterns within the source domain

data to align features more effectively. By concentrating on

these explicit graph topologies, this branch supports the GNN

backbone by consistency learning, enabling it to utilize the

structural information between the domains.

Finally, we introduce curriculum data fusion, a grad-

ual blending process of source and target domain informa-

tion. (See Section IV-D) Starting simple and growing more

complex, this process reflects the concept of a learning cur-

riculum, integrating structural knowledge from both domains.

By incrementally exposing the model to the target structures,

we facilitate a stable and effective domain adaptation.

B. Multi Teacher Method
Capitalizing on the Mean Teacher paradigm [23], we adapt

this semi-supervised learning framework to unsupervised do-

main adaptation. Our multi-teacher (MuT) method employs

two teacher models, Booster Teacher (BT) and stabilizer
Teacher (ST), which have the same architecture and initial-

ization as the pre-trained GNN model. Then, we fuse their

predictions to provide a unified guide for the student model,

which enhances the model’s robustness against domain shift.

Let Φθ be our student model with parameters θ and ΦθBT

represent the BT model with parameters θBT. The parameters

of BT at iteration i + 1 are updated using the exponential

moving average (EMA) of the student’s parameters:

θBT
i+1 = αθBT

i + (1− α)θi , (6)

where α is a smoothing coefficient that controls the update

rate, which is set to a constant value of 0.99 following the

previous practice [23]. In addition to this, we keep track

of the ST model with parameters θST. At each epoch, we

perform temporal-wise archiving where we evaluate the BT’s

performance on the source dataset and update θST if the BT

surpasses the accuracy of the ST:

θST = argmaxθBT(Acc(θBT,Dso)) , (7)

where Acc denotes the accuracy function.
Instead of using the multi-teacher models to supervise the

student model independently, we unify their predictions before

providing feedback to the student. Specifically, for each target

graph instance Gta
j , we average the probabilistic outputs of the

BT and ST to derive a single supervisory signal:

ŷMuT
Gta
j

=
1

2
(ŷBT

Gta
j

+ ŷST
Gta
j
) , (8)

where ŷBT
Gta
j

and ŷST
Gta
j

are the soft prediction labels from the

BT and ST, respectively.
The MuT consistency loss is now represented as the di-

vergence between the student’s prediction and this fused

supervisory signal:

L(j)
MuT = DKL

(
ŷMuT
Gta
j

‖ ŷGta
j

)
, (9)

where ŷGta
j

corresponds to the student’s prediction for target

graph Gta
j . The LMuT is then the mean of the consistency losses

across all target domain graph instances:

LMuT =
1

Nta

Nta∑
j=1

L(j)
MuT . (10)

By feeding the student model with a fused supervisory

signal from the two teacher models, the MuT methodology

harmonizes their individual predictive strengths. This integra-

tion of teacher model outputs is expected to yield a more stable

target for the student to learn from, enhancing its performance

across the domain shift and ensuring more stable adaptation

in the target domain.

2601

Authorized licensed use limited to: Peking University. Downloaded on April 08,2025 at 18:00:12 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: Overview of MTDF. For stable adaptation in UDA, MTDF employs a multi-teacher framework with booster and

stabilizer teachers. Moreover, MTDF leverages consistency learning for multi-view information from the graph motif model

and message-passing model, which contains explicit topology information and implicit relation representation, respectively. We

also utilize curriculum cross-domain data fusion mechanisms to bridge the target domain with the source domain, achieving

effective domain adaptation.

C. Motif Network Model with Consistency Learning
1) Motif GNN Architecture: Motif-based Graph Neural

Networks (MGNNs) [45], [77] capitalize on higher-order

structural properties by introducing motif-based substructures

to the model. Figure 3 briefly illustrates how MGNN works.
We denote the set of motif instances as Mk, for k ∈

{1, . . . ,K}, where K is the number of distinct motifs con-

sidered in the analysis. We first construct the motif-based

adjacency matrix AMk
by using the following equation:

(AMk
)ij =

∑
m∈Mk

I((xi, xj) ∈ m) , (11)

where I represents an indicator function, i.e., I(x) = 1 if the

statement x holds true, and I(x) = 0 if it does not. Therefore,

AMk
counts the number of links between each pair of nodes

through Mk. Following the previous work [45], [77], the

MGNN process can be captured by the simplified equation:

hM
v = MGNN (G,Mk, AMk

, L) , (12)

where MGNN(·) represents the integration of motif-specific

features through aggregation, distillation, and pooling across

L layers to achieve the final node feature embedding hM
v ,

illustrated in Figure 3.
Similar to GNN’s training, we use the READOUT function

and MLP classifier for predicting label distribution.

zMG = HEAD
(
READOUT

({
hM
v | v ∈ V})) , (13)

and optimize parameters by minimizing the cross-entropy loss

through the source dataset:

Lsource_motif = − 1

Nso

Nso∑
i=1

log
(
ŷM
Gso
i
[yso

i ]
)
. (14)

MGNN distinguishes itself from traditional GNNs like GCN

by integrating motif-based structural insights, capturing com-

plex node relationships and higher-order graph properties.

This approach enriches node representations and enhances

model adaptability, offering a more detailed and effective

methodology for graph unsupervised domain adaptation.

2) Consistency Learning for Domain Adaptation: In our

approach, graph-level consistency learning is seamlessly in-

tegrated into our MGNN framework to improve UDA per-

formance. This strategy strives to unify the global structural

feature distributions of the source and target domain graphs

into domain-invariant representations.

To achieve this, we formulate a probabilistic consistency

loss, Lprob, to encourage similarity between the predicted label

distributions of the target graphs generated by the MGNN,

ŷM
G , and those predicted by the pre-trained GNN, ŷG . This

loss enforces that the probability vectors produced by both

models for the same graph should be similar, thus preserving

label consistency across models:

Lprob = − 1

Nta

Nta∑
i=1

log
(
ŷM
Gta
i
[ŷGta

i
]
)
. (15)

Moreover, we define an additional consistency loss, Lrep,

that minimizes the distance between the graph-level rep-

resentations from the MGNN, zMG , and the corresponding

representations from the original GNN, zG :

Lrep =
1

Nta

Nta∑
i=1

‖zMGta
i

− zGta
i
‖22 , (16)
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Fig. 3: Illustration of Motif-based Graph Neural Networks

(MGNN). MGNN captures and integrates motif-specific fea-

tures through motif-specialized aggregation, distillation, and

average pooling, enabling effective modeling of higher-order

structural properties in graph data.

where ‖ · ‖2 represents the L2 norm. Lrep aligns the global

graph representations learned by MGNN with those of the

original GNN, thereby facilitating the transfer of knowledge

while mitigating overfitting to motif-specific features in com-

plex graph structures.
By uniting these two facets of consistency, i.e., proba-

bilistic and representational, we arrive at a composite motif-

consistency loss, denoted as Lcon, which embodies both co-

herent predictions and aligned graph-level representations:

Lcon = Lrep + Lprob . (17)

This combined loss aligns both label distributions and

graph-level representations between source and target do-

mains. This alignment, achieved through probabilistic and rep-

resentational consistency losses, ensures coherent predictions

and stable graph feature representations, enhancing unsuper-

vised domain adaptation performance.

D. Cross-Domain Data Fusion with Curriculum Learning
Building upon the framework of GNNs and the unsuper-

vised domain adaptation, we propose a novel methodology to

fuse structural patterns across domains, enriching the train-

ing process with a curriculum learning strategy. Inspired by

[78], [79], we create and utilize a graphon transformation

matrix (GTM), a novel representation capturing the structure

of a dataset, for cross-domain data fusion.
Formally, we define the GTM for domain D as WD ∈

[0, 1]|V|×|V|, constructed by first ordering nodes based on

their degree and then estimating the pairwise edge formation

probabilities. The GTM serves as a high-level abstraction of

domain-specific topological profiles, reflecting the likelihood

of connectivity patterns among node pairs.
To achieve cross-domain data fusion, we introduce a dy-

namic fusion mechanism with a curriculum schedule λ(t) ∈
[0, 1], where t denotes the training time. This parameter

makes the mixed GTM initially biased towards the source

GTM WDso
, then gradually shifted to incorporate the target

GTM WDta
as training progresses. The mixed GTM W̃ (t) is

computed through a convex combination:

W̃ (t) = λ(t)ηWDso
+ (1− λ(t))δWDta

, (18)

where λ(t) is designed to decay from 1 to 0 following a

linear schedule, and η, δ are the scaling factors for two GTMs,

thus applying the curriculum learning paradigm to the domain

adaptation process.

Given a target graph Gta with its adjacency matrix Ata, we

synthesize an adjacency matrix Âta that merges W̃ (t) with

Ata. This is achieved by using the mixed GTM to adjust the

existing adjacency matrix, producing edge probabilities for the

transformed target graph. The updated equation for obtaining

the edge probability between nodes u and v in Âta is:

Âta
uv(t) = (1− (η − δ)λ(t)− δ)Ata

uv + W̃uv(t) , (19)

where Âta
uv(t) represents the probability of an edge between

nodes u and v in the synthesized adjacency matrix at training

time t. Edges in the newly synthesized graph are then sampled

based on these probabilities:

p(Âta
uv = 1 | Âta(t)) = Âta

uv(t) . (20)

Using this approach, we ensure that the inherent structure

of the target graph is respected while still allowing the

curriculum-driven GTM mixing strategy to introduce domain-

adapted structural differences over time.

To continue with the subsequent loss computation and

optimization, we use the fused probability matrix Âta(t) to

generate the fused graphs Ĝta
j (t).

We first generate the confidence set C for the pseudo-label

learning as:

C = {Ĝta
j |c = argmax

c′
ptaj , staj > τ} , (21)

where staj is the confidence score, which is the maximum of

the logits. Moreover, τ is the confidence score threshold, which

is set to 0.90 following [80].

Then we have the pseudo-label classification loss on the

target domain as:

Lcls(t) = − 1

|C|
∑

Gta
j ∈G

log
(
ptaj

[
ŷ

̂Gta
j (t)

])
, (22)

where ŷ
̂Gta
j (t) is the pseudo-label of sample Ĝta

j , which is

generated from the class with maximum logits in the confident

set C. Lcls stands for the curriculum-driven classification loss

reflecting the updated methodology. This approach aligns with

the unsupervised domain adaptation objective, focusing on

balancing learning from the original target graph structure and

the domain-adaptive GTM representation.

E. Summarization

Our approach exploits the underlying graph structure by

leveraging a classification loss (Lcls), a feature space matching

loss (LMuT ), and a consistency loss (Lcon). Consequently, the

composite loss function is formalized as:

Ltotal = Lcls + βLMuT + γLcon , (23)

where β and γ are hyperparameters controlling the significance

of each loss component. Our unsupervised domain adaption
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Algorithm 1 Optimization Algorithm of MTDF

Input: Source dataset Dso, target dataset Dta,

Output: GNN-based classifier Φ(·)
1: Pre-train Φ(·) using Dso;

2: Train Motif-GNN using source graphs by minimizing

Eq. 14;

3: Booster teacher model ΦBT (·) ← Φ(·);
4: Stabilizer teacher model ΦST (·) ← Φ(·);
5: Generate confident target graphs with pseudo-labels;

6: for epoch = 1, 2, · · · do
7: for each batch do
8: Sample a mini-batch of target graphs;

9: Calculate the loss objective using Eq. 23;

10: Update parameters of Φ(·) by back-propagation;

11: end for
12: Update ΦBT (·) using Eq. 6;

13: if ΦBT (·) is better than ΦST (·) on Dso then
14: ΦST (·) ← ΦBT (·) ;

15: end if
16: end for

framework is detailed in Algorithm 1 for an iterative opti-

mization procedure.

The computing complexity of the adaptation in MTDF

primarily relies on two types of networks. For given graph

G = (V, E), d is the feature dimension. ||AM||0 is the

number of nonzeros in all motif-based adjacency matrixes,

which is linearly related to K. L1 and L2 denote the layer

number of GCN and MGNN respectively. The GCN takes

O(L1|E|d + L1|V|d2) computational time while the MGNN

takes O(L2||AM||0d+L2|V |d2). As a result, the complexity

of our MTDF is proportional to |V|, |E|, and ||AM||0.

V. EXPERIMENTS

A. Experimental Settings

1) Datasets: In our experiments, we employ a variety of

real-world datasets, from cheminformatics to social networks,

for unsupervised graph domain adaptation. Notably, we use

both splitting datasets and crossing datasets to evaluate the

efficacy of our approach.

Specifically, we leverage the NCI1 dataset [81], [82], a

cornerstone in cheminformatics research, for screening anti-

cancer compounds, particularly focusing on lung cancer.

The DD dataset [83] aids in classifying protein structures

into enzymes and non-enzymes. The TWITTER-Real-Graph-

Partial dataset [84], utilized for sentiment analysis of tweets,

underscores its relevance in social network analysis. The

PTC dataset [85] facilitates toxicology prediction in chemical

compounds and is segmented into different domains based on

rodent sex and species. Its importance in safety and regulatory

assessments cannot be overstated, as it helps in evaluating

chemical safety and environmental impact. Additionally, we

incorporate the BZR, COX2, and DHFR datasets [86], [87],

along with their MD variants. These datasets are segmented

TABLE II: Statistics of the datasets.

Datasets Graphs Avg. Nodes Avg. Edges

NCI1 4110 29.87 32.30

TWITTER-Real-Graph-Partial 144033 4.03 4.98

DD 1178 284.32 715.66

PTC

PTC_FM 349 14.11 14.48
PTC_FR 351 14.56 15.00

PTC_MM 336 13.97 14.32
PTC_MR 344 14.29 14.69

BZR
BZR 405 35.75 38.36

BZR_MD 306 21.30 225.06

COX2
COX2 467 41.22 43.45

COX2_MD 303 26.28 335.12

DHFR
DHFR 756 42.43 44.54

DHFR_MD 393 23.87 283.02

into different domains based on chemical spaces and are

utilized for classifying biochemical ligands and inhibitors.

The statistics of these datasets are shown in Table II. In

our experimental setup, we perform unsupervised domain

adaptation across these datasets by considering permutations

of source and target domains, such as PTC_FM→PTC_FR

and BZR→BZR_MD. As we focus on classification tasks, our

evaluation metric is the classification accuracy on the target

domain, which is crucial for assessing the effectiveness of our

domain adaptation approach.
2) Domains: The domain adaptation experiments on the

TWITTER-Real-Graph-Partial, DD, and NCI1 datasets are

designed to analyze the performance of MTDF in splitting

datasets. To achieve this, all datasets are partitioned into four

discrete groups, T0, T1, T2, and T3 for Twitter, D0, D1, D2,
and D3 for DD, and N0, N1, N2, and N3 for NCI1, with

the groupings reflecting incremental ranges of graph density.

Graph density is defined as the equation:

Ψ(V , E) = 2|E|
|V|(|V| − 1)

, (24)

where |E| represents the number of edges and |V| represents

the number of nodes. We incorporated domain shift by divid-

ing the single dataset through the density to create different

domains for experiments.

For the PTC, BZR/BZR_MD, COX2/COX2_MD, and

DHFR/DHFR_MD datasets, the domain adaptation trials are

conducted following a multi-dataset approach. Each labeled

group within a dataset (e.g., PTC_FM, PTC_FR, PTC_MM,

and PTC_MR) serves as an isolated domain. Our approach

investigates the transferability of models across these domains,

which involve shifts in chemical structure spaces or biological

properties. The pre-trained models initially tuned on the source

domain (e.g., PTC_FM) are adapted to the target domain (e.g.,

PTC_MM), utilizing both labeled source domain data and

unlabeled target domain data during the adaptation period.
3) Baselines: We compare MTDF to an extensive range of

state-of-the-art baselines. These baselines are detailed below:
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TABLE III: The classification results (in %) on NCI1 (source→target). N0, N1, N2, and N3 are split by the graph density.

Methods N0→N1 N0→N2 N0→N3 N1→N0 N1→N2 N1→N3 N2→N0 N2→N1 N2→N3 N3→N0 N3→N1 N3→N2 Avg.

GIN 66.0 60.6 50.3 68.0 68.4 69.9 61.0 65.6 73.1 48.3 59.4 62.9 62.8
GCN 55.8 59.1 54.0 73.3 65.0 70.7 73.5 60.7 70.2 67.8 54.5 55.1 63.3
GAT 63.4 60.0 41.7 70.1 68.2 70.1 73.2 63.1 69.3 56.6 56.3 60.5 62.7
SAGE 54.9 55.8 50.1 74.5 59.7 66.0 76.2 59.7 71.7 70.6 57.2 64.8 63.4
MeanTeacher 54.9 45.2 51.6 73.8 45.2 50.7 73.3 54.9 50.2 72.8 55.8 47.1 56.3
InfoGraph 66.5 61.0 57.6 62.7 64.6 64.1 75.7 62.6 67.1 69.9 60.7 50.2 63.6
DANN 64.1 58.7 45.6 76.2 69.8 63.6 71.3 70.9 70.0 70.4 58.3 67.5 65.5
ToAlign 65.5 61.7 47.1 73.3 69.9 59.7 71.4 69.9 69.9 68.0 59.2 63.1 64.9
UDAGCN 59.8 53.9 53.9 75.8 62.5 68.2 71.3 62.1 68.4 57.7 52.9 58.8 62.1

Ours 67.5 70.9 71.8 76.7 65.0 73.1 77.2 62.5 74.3 75.9 61.0 57.8 69.5

Fig. 4: Visualization of data fusion process on NCI1 dataset. N0 and N3 are subsets of NCI1, with N0 being sparser and N3

being denser. As N3 → N0, the graphs become sparser. As N0 → N3, the graphs become denser. The proposed curriculum

data fusion strategy is shown to effectively merge the style of the source domain graphs while maintaining the semantics of

the target domain graphs, thereby facilitating a more stable domain adaptation process.

• GIN [40]: This message passing neural network general-

izes the powerful Weisfeiler-Lehman graph isomorphism

test, and is designed to capture a wide variety of topo-

logical graph structures more accurately.

• GCN [15]: A widely-used graph neural network that

utilizes a first-order approximation of spectral graph con-

volutions, GCN adeptly embeds structural information,

along with node features, into its framework.

• GAT [41]: Graph Attention Networks leverage attention

mechanisms to weigh neighbors differently, enabling flex-

ible, localized learning on graphs without the need for

costly spectral operations.

• GraphSAGE [42]: GraphSAGE innovates on inductive

learning for large graphs by aggregating sampled neigh-

borhood features, facilitating learning on unseen nodes

during the training process.

• Mean-Teacher [23]: Mean-Teacher employs a student-

teacher paradigm, improving semi-supervised learning

by maintaining a consistency between the teacher (an

averaged student model) and the student predictions.

• InfoGraph [70]: InfoGraph maximizes the mutual infor-

mation between different graph scales to learn powerful

graph representations in a semi-supervised GNN setting.

• DANN [60]: Domain-adversarial neural Networks en-

hance domain adaptation by learning features that serve

the source task while remaining domain-neutral, lever-

aging a gradient reversal layer for aligning distributions

from domains with minimal architecture changes.

• ToAlign [88]: Operating under the tutelage of task-

induced prior knowledge, ToAlign executes a methodical

feature decomposition and alignment between the source

and target domains.

• UDAGCN [16]: UDAGCN combines graph convolutional

networks with domain adaptation to minimize the distri-

bution discrepancy between source and target domains

for robust graph-based learning.

By comparing our approach to these methods, we can

effectively measure the performance of our approach.

4) Implementation Details: The baseline methods are im-

plemented by using PyTorch and PyTorch Geometric library,
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TABLE IV: The classification results (in %) on TWITTER-Real-Graph-Partial (source→target). T0, T1, T2, and T3 are split

by the graph density.

Methods T0→T1 T0→T2 T0→T3 T1→T0 T1→T2 T1→T3 T2→T0 T2→T1 T2→T3 T3→T0 T3→T1 T3→T2 Avg.

GIN 59.7 62.8 60.4 64.2 62.2 61.3 61.7 63.2 61.0 62.3 61.8 62.4 61.9
GCN 62.0 62.9 59.7 64.1 63.4 59.8 64.2 62.8 60.5 62.7 61.4 62.7 62.2
GAT 60.6 63.2 60.0 63.1 61.6 59.8 63.5 61.6 59.5 63.4 62.1 63.7 61.9
SAGE 61.0 64.6 62.1 61.9 61.9 60.8 62.9 62.6 60.9 61.7 60.9 63.4 62.1
MeanTeacher 52.2 49.2 46.1 49.0 50.7 46.1 49.5 51.7 52.6 48.1 48.0 51.1 49.5
InfoGraph 63.9 65.1 61.6 65.6 65.0 59.2 64.3 63.3 60.8 63.3 62.4 63.3 63.2
DANN 58.4 60.0 58.0 59.0 59.4 57.4 57.7 58.1 58.4 58.2 57.9 60.4 58.6
ToAlign 58.6 59.5 55.5 57.7 58.1 56.1 56.3 57.2 57.8 57.7 57.6 60.2 57.7
UDAGCN 64.4 65.8 64.8 64.5 65.0 64.6 62.7 62.7 61.2 61.7 62.2 60.0 63.3

Ours 64.5 66.4 65.1 64.7 65.2 62.2 64.9 63.5 63.2 63.2 63.4 64.4 64.2

TABLE V: The classification results (in %) on PTC (source→target).

Methods MR→MM MR→FM MR→FR MM→MR MM→FM MM→FR FM→MR FM→MM MR→FR FR→MR FR→MM FR→FM Avg.

GIN 61.8 64.3 57.7 56.5 45.7 53.5 37.7 42.6 44.5 59.4 66.2 54.3 53.7
GCN 63.2 62.9 66.2 55.1 45.7 67.6 62.3 54.4 64.8 58.0 60.3 52.0 59.4
GAT 60.0 46.0 70.7 57.1 46.3 65.9 54.5 53.8 53.2 69.0 65.9 51.7 57.8
SAGE 58.8 55.1 67.6 56.5 47.4 66.2 48.1 48.2 45.1 58.0 63.2 52.6 55.6
MeanTeacher 61.8 61.4 73.2 60.9 52.9 50.7 65.2 44.1 35.1 66.7 55.9 42.9 55.9
InfoGraph 63.2 60.0 66.2 59.4 48.6 67.6 55.1 56.4 64.8 63.8 69.1 54.3 60.7
DANN 76.5 64.3 69.0 63.8 55.7 73.2 50.7 48.5 66.2 71.0 70.6 52.9 63.5
ToAlign 73.5 45.7 67.6 66.7 54.3 67.6 58.0 50.0 67.6 71.0 76.5 55.7 62.9
UDAGCN 68.8 62.3 70.1 58.4 55.6 71.5 62.9 55.8 66.9 69.0 66.1 55.7 63.6

Ours 65.9 64.8 76.9 61.2 56.0 73.9 62.6 56.8 69.0 71.1 71.6 56.0 65.5

which are initiated with hyperparameters as the corresponding

paper and fine-tune them to optimize performance. As for

our MTDF, implementation details in both the source domain

training stage and target domain adaptation stage are:

Model Training on the Source Domain: The foundation

of our model begins with source domain training, where we

employ a GCN encoder to learn initial graph representations.

The GCN is configured with a hidden dimensionality of 128
and is structured into 2 layers, optimizing learning in a mini-

batch with a size of 256. We utilize the Adam optimizer with a

learning rate of 0.001. The training procedure consists of 100
epochs to ensure model convergence. Before domain adapta-

tion, the graph motif model with a hidden dimensionality of

128 and 2 layers is initialized with a preliminary phase of 50
epochs, which focuses on capturing higher-order patterns to

be later used for feature alignment purposes.

Domain Adaptation on the Target Domain: In the domain

adaptation process, we first generate pseudo-labels from the

model trained by source data. The threshold for generating

pseudo labels during unsupervised training is firmly set to

0.9, ensuring a high level of confidence in the temporal labels

assigned for the target domain data. We attribute a motif

model loss weight of 0.3, embodying its significance in feature

alignment through consistency learning. The integration of

the multi-teacher is set at a loss weight of 0.2. This allows

the model to play an effective role in stabilizing the training

process and supervision during the adaptation process. We

further incorporate data fusion regularization techniques, with

the source fusion weight gradually decaying from 0.9 to 0 and

the target fusion weight gradually increasing from 0 to 0.3,

effectively combining features from both domains to help the

model against domain discrepancies. The adaptation process

is conducted at 10 epochs using the Adam optimizer with a

learning rate of 0.001 and a batch size of 256.

B. Performance Comparison

In this section, we evaluate various methods across several

datasets, as shown in Tables III, V, and VII.

First, the experiments show the superior performance of

domain adaptation methods over source-only GNN approaches

in most cases, demonstrating that domain adaptation strategies

are better for handling the situation of domain shifts.

Second, semi-supervised methods (e.g., InfoGraph), gener-

ally surpass source-only methods. These approaches can lever-

age both labeled data from the source domain and unlabeled

data from the target domain. However, these methods do not

take domain shift into account, leading to poor performance.

Third, domain adaptation methods (e.g., DANN) shows

higher performance on unspervised domain adaptation

tasks (e.g., BM → B, MR → MM). However, these methods do

not specifically consider the problems of non-European data,

leading to worse performance sometimes (e.g., in Table IV).

In contrast, graph domain adaptation method (i.e., UDAGCN)

outperforms methods like DANN as it takes into account

the graph structure, which is crucial for the underlying data

representation. However, UDAGCN is tailored for node clas-
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(a) Efficiency analysis (b) Scalability analysis

Fig. 5: (a) For efficiency analysis, we evaluate the model

performance, adaptation speed, and model complexity on the

NCI1 dataset. The radius of the circle represents the parameter

volume of the method. (b) For scalability analysis, we evaluate

the adaptation time of each batch across different sizes of

graph and different methods. Both axes are in log scale.

sification tasks, whereas our focus is on graph classification, a

domain where MTDF excels by considering the holistic graph

features rather than just individual nodes.

Fourth, our MTDF demonstrates improvements in both

splitting datasets and crossing datasets scenarios with a large

margin, particularly in the case where other methods perform

poorly. There is an accuracy improvement of up to 4.0% across

these datasets, as III, IV, V, VI, and VII shows.

The enhancements of MTDF can be summarized into three

aspects: 1) The multi-teacher paradigm facilitates the stable

adaptation process, allowing the model to learn from the

unlabeled target data in data scarcity scenarios. 2) The multi-

view framework, combining explicit global information and

implicit connection information with consistency learning,

enables more comprehensive modeling of graph data. 3) Data

fusion with curriculum learning bridges the source and target

domain. It helps the stable adaptation of the model by learning

more about the source-style structure in the initial phase and

gradually introducing target-style structural information.

C. Scalability and Efficiency Analysis

Under the setting in Section V-A4, we examine the scala-

bility and efficiency of every method that has the adaptation

process, as shown in Figure 5, in terms of model performance,

time cost during adaptation, and model complexity. Our exper-

iments were conducted on a test environment equipped with

an RTX 3090 GPU, a 10-core Intel(R) Xeon(R) Platinum

8255C CPU @ 2.50GHz, and 30GB RAM. The MTDF

can successfully balance time cost and model complexity to

achieve the best performance.

In terms of adaptation time, MTDF takes 90.2ms per batch

to adapt, which is competitive with other advanced methods

such as DANN and ToAlign, which have adaptation times of

86.5ms and 95.8ms per batch, respectively. Despite having

the fastest adaptation time, MeanTeacher does not reflect

(a) Before data fusion (b) After data fusion

Fig. 6: T-SNE visualization on NCI1 dataset.

this efficiency advantage in its final accuracy. In contrast,

our method not only maintains a low adaptation time but

also achieves the highest accuracy of the evaluated methods,

demonstrating superior performance and indicating a robust

model that does not compromise quality for speed.

In terms of model complexity, our method is of 356K pa-

rameters, significantly less than InfoGraph’s 1.02M, DANN’s

1.28M, and ToAlign’s 1.15M. This suggests that it is not

the quantity but the quality of parameters that contribute

to the superior accuracy of our approach. MTDF does not

introduce excessive model complexity in achieving efficient

unsupervised domain adaptation.

In evaluating scalability, the MTDF exhibited remarkable

efficiency across datasets of varying sizes, as evidenced by

the adaptation time cost depicted in Figure 5b. The datasets

ranged from Twitter, with an average of 4 nodes, to DD,

with an average of 284 nodes, representing a substantial

increase in graph complexity. Notably, from Twitter to DD,

the adaptation time for our method increased by a mere

32.6%, a modest uptick considering the substantial growth

in dataset size. This contrasts sharply with other methods,

which all experienced at least a 60.9% increase in adaptation

time under the same conditions. This data underscores the

MTDF’s superior scalability, maintaining both efficiency and

performance even as dataset complexity escalates, positioning

it as a suitable solution for large-scale graph data applications.

D. Visualization

We demonstrate the effect of the data fusion process through

visualization, as shown in Figure 4. We employ a data fusion

strategy that not only preserves the essential topological infor-

mation but also adapts the graph to the patterns in the source

domain. This balance between maintaining graph integrity and

domain adaptation is visualized on the NCI1 dataset.

We visualize the subsets with the lowest and highest edge

densities, labeled N0 and N3 for NCI1. These represent the

most challenging scenarios within our adaptation framework,

as they have the largest discrepancies in edge density. Our vi-

sualizations show the bidirectional process from sparse graphs

(N0) to dense graphs (N3) and vice versa. This demonstrates

our method’s capability to both retain the unique structure of

the original graph and integrate features from another domain.

In summary, the MTDF adeptly fuses graphs while meticu-

lously preserving their inherent structures and adapting to new

domains, a dual capability that is effectively demonstrated in
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TABLE VI: The classification results (in %) on DD (source→target). D0, D1, D2, and D3 are split by the graph density.

Methods D0→D1 D0→D2 D0→D3 D1→D0 D1→D2 D1→D3 D2→D0 D2→D1 D2→D3 D3→D0 D3→D1 D3→D2 Avg.

GIN 82.6 58.3 61.2 93.0 64.4 62.9 52.5 61.0 66.1 69.8 59.7 59.3 65.9
GCN 80.4 60.0 63.6 93.2 57.6 61.0 91.5 79.6 67.8 63.2 63.4 59.5 70.1
GAT 80.3 59.0 62.9 94.9 62.7 62.7 93.2 79.6 76.3 60.2 60.0 56.3 70.7
SAGE 80.9 60.2 64.4 93.4 59.3 62.8 93.2 78.0 71.2 55.9 57.6 57.2 69.5
MeanTeacher 79.3 60.3 71.1 83.1 57.6 69.5 74.4 72.6 71.2 76.4 69.3 64.4 70.8
InfoGraph 77.8 59.2 70.9 86.9 59.2 67.6 76.1 71.0 69.3 74.3 75.9 57.6 70.5
DANN 84.7 67.8 71.0 88.1 67.8 65.9 84.6 74.6 74.4 80.8 76.8 57.7 74.5
ToAlign 81.4 69.5 74.4 86.4 66.1 69.3 81.2 72.8 74.7 74.4 70.7 59.3 73.3
UDAGCN 79.4 57.3 69.0 86.5 59.4 70.7 86.5 79.4 64.7 69.3 68.9 53.8 70.4

Ours 81.4 61.0 74.6 96.6 59.3 74.6 94.9 79.7 76.3 94.7 79.9 66.1 78.2

TABLE VII: The classification results (in %) on COX2,BZR

and DHFR (source→target). B, BM, C, CM, D and, DM

denote BZR, BZR_MD, COX2, COX2_MD, DHFR, and

DHFR_MD datasets, respectively.

Methods B→BM BM→B C→CM CM→C D→DM DM→D Avg.

GIN 54.3 79.1 45.9 61.7 57.0 67.9 61.0
GCN 46.8 79.0 57.4 76.6 51.5 68.4 63.3
GAT 49.4 79.5 52.6 68.1 49.3 67.1 61.0
SAGE 48.1 65.4 58.5 59.2 55.2 54.1 56.7
MeanTeacher 54.8 76.5 49.2 76.7 42.8 61.2 60.2
InfoGraph 56.5 77.8 57.4 72.3 55.4 55.4 62.5
DANN 54.8 84.0 52.6 67.0 63.4 58.2 63.3
ToAlign 54.9 79.0 57.6 76.6 55.4 62.9 64.4
UDAGCN 57.9 71.3 56.0 75.2 57.0 66.1 63.9

Ours 58.1 79.8 59.0 77.0 64.6 70.2 68.1

the NCI1 dataset visualizations. Figure 6 further substantiates

the efficacy of our data fusion process. Before data fusion, the

graph embeddings are distinctly clustered into two separate

groups, indicative of the gap between source and target data.

However, after applying our data fusion strategy, the embed-

dings coalesce, reflecting a significantly reduced discrepancy

between the domains. This visual evidence underscores the

MTDF’s proficiency in narrowing the domain gap, thereby

simplifying the adaptation process.

E. Ablation Study

In this section, we present ablation experiments to analyze

the effectiveness of each component of our MTDF. The

complete model consists of several techniques: the multi-

teacher (MuT) framework with booster and stabilizer, the

multi-view complementary framework with consistency learn-

ing, and cross-domain data fusion with curriculum learning.

Our ablation study evaluates the effectiveness of each compo-

nent by adding components to the baseline model.

Table VIII summarizes the results of the ablation study.

Each row represents the performance of the method when a

component is added to the baseline. Several observations can

be made from the table:

1) Component Contributions: Each submodule contributes

to the performance upon the baseline. The multi-teacher (line

w/ MuT) significantly improves model stability by temporally

combining booster and stabilizer. The multi-view framework

introduces a graph motif branch (line w/ motif) to exploit

structural information in the graph and facilitate the discrim-

ination of feature representations. In addition, the inclusion

of the data fusion process (line w/ Fusion-s, Fusion-t, and

Fusion) bridges the source domain with the target domain and

contributes to stable adaptation.

2) Comprehensive Integration: Our proposed method

MTDF encapsulates all of the techniques mentioned above.

Remarkably, MTDF consistently outperforms each method

on almost all subtasks, demonstrating that these components

work well when integrated. The superiority of our complete

model validates the hypothesis that the combination of these

techniques addresses domain shift and data scarcity, thus

providing a more robust framework for graph UDA.

3) Data Fusion Insights: To fully validate the data fusion

module, we study it with three variants, i.e., data fusion with

source data only (line w/ Fusion-s), data fusion with target data

only (line w/ Fusion-t), and data fusion with both source and

target data (line w/ Fusion). All three variants contribute to the

improvements over the baseline but also play different roles.

In particular, Fusion-s outperforms Fusion-t, indicating that

starting the model with a richer representation of the source

domain is more important than adding the global target domain

information during the adaptation process. Nevertheless, each

fusion variant is critical, as their combination exploits the

strengths of the data from both domains and achieves better

performance than either one individually.

The overall results of the ablation study demonstrate not

only the effectiveness of each technique but also that all

techniques work together efficiently. Ultimately, the combi-

nation of these techniques in MTDF leads to state-of-the-art

performance for graph UDA, as the results in Table VIII.

F. Hyper-parameter Sensitivity

In this section, we analyze the sensitivity of the hyperparam-

eters on the serval datasets shown in Figure 7, 8, and 9. These

hyperparameters include loss weights and fusion weights, none

of which have a large effect on the results of the method when

varied. The specific analysis is as follows.

1) Analysis to the loss weight of multi-teachers: The loss

weight β helps to balance the training object in our multi-

teacher mechanism. By varying the weight β from 0 to 1,
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TABLE VIII: The ablation study classification results (in %) on NCI1 (source→target). N0 - N3 are split by the graph density.

Methods N0→N1 N0→N2 N0→N3 N1→N0 N1→N2 N1→N3 N2→N0 N2→N1 N2→N3 N3→N0 N3→N1 N3→N2 Avg.

Baseline 55.8 59.1 54.0 73.3 65.0 70.7 73.5 60.7 70.2 67.8 54.5 55.1 63.3

w/ MuT 62.6 57.3 63.1 76.2 64.3 72.1 74.5 55.6 72.8 74.8 57.5 58.7 65.8
w/ Motif 64.1 60.8 68.2 75.5 67.0 72.2 63.6 58.9 72.2 71.7 54.9 59.3 65.7
w/ Fusion-s 63.6 58.0 68.7 75.7 58.3 71.8 73.8 50.5 73.1 74.3 54.9 57.3 65.0
w/ Fusion-t 62.9 58.5 65.5 74.8 62.9 71.8 74.8 54.6 72.8 72.8 50.0 55.6 64.7
w/ Fusion 60.4 59.0 70.1 75.7 63.6 72.6 74.0 57.5 72.3 74.3 57.3 59.2 66.3

Ours 67.5 70.9 71.8 76.7 65.0 73.1 77.2 62.5 74.3 75.9 61.0 57.8 69.5

Fig. 7: Sensitivity analysis on loss weight of multi teachers.

Fig. 8: Sensitivity analysis on loss weight of motif network.

as shown in Figure 7, we can see some influence on the

adaptation performance. We find that setting the weight to

0.2 gives the best average accuracy across different datasets.

A positive but low weight on the consistency loss seems to

favor the stability and trustworthiness of the pseudo-labels

by allowing the influence of the teachers to complement,

rather than replace, the primary learning signals. This balance

ensures that our model remains responsive to the dynamic

nature of the unsupervised domain adaptation task.

2) Analysis to the loss weight of multi-view framework:
The loss weight γ is used to balance the loss of consistency

learning of the motif-based branch, which introduces the

explicit structural information. Our empirical investigation of

the weight ranges from 0.1 to 1, with the finding that the

model generally performs better at a weight of 0.3, as shown

in Figure 8. In addition, changing γ has little effect on

performance, suggesting that the introduction of multi-view

information itself, rather than the hyperparameter, has a more

notable effect on model improvement.

3) Analysis of data fusion coefficient weights for source
and target domains: We attentively explore the interaction

between source and target data fusion weights. Our investiga-

tion includes combinations in the range of {0.3, 0.5, 0.7, 0.9}×
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Fig. 9: Sensitivity analysis on data fusion weights.

{0.1, 0.3, 0.5, 0.7}, where we identify (0.9, 0.3) as optimal, as

shown in Figure 9. We infer that a higher source fusion weight

provides the model with a smoother start, facilitating the

integration of source domain knowledge. Conversely, the target

domain benefits from a moderate fusion weight, avoiding the

model from being overly biased towards them. This fusion

method effectively exploits the structural similarities between

domains while maintaining a balance between exploration and

exploitation during the UDA process.

VI. CONCLUSION

In this work, we have investigated the challenging issue of

unsupervised graph domain adaptation. Our novel framework,

MTDF, features a multi-view teacher architecture, integrating

with a multi-teacher-based learning scheme with different

update strategies and a multi-view framework with a motif-

based network for explicit structural features. Additionally, it

adapts data fusion through the curriculum learning mechanism.

Through thorough empirical validation across various datasets,

our method not only sets a new state-of-the-art for counteract-

ing domain shift and data scarcity but also paves the way for

further research of graph UDA. The remarkable performance

of MTDF also demonstrates the significant potential of graph

domain adaptation in the scenarios lacking labeled target data.
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